



## Resiliency in 2024 and Beyond





SYMPOSIUM ON FLOODING ADAPTATION

**29 NOVEMBER 2024** 

# Florida Flood Hub

## OVERVIEW

Represents a first in Florida

Established by the State at the University of South Florida's College of Marine Science Focus on some of the state's most pressing environmental challenges

Improve flood forecasting and inform science-based policy, planning, and management

Bridge gaps among scientists, policymakers, practitioners, and the public to help communities mitigate and adapt to flooding

Inform resilience — the ability of communities to prepare for, withstand, and rebound from floods and other natural hazards





# Scientific and Technical Workgroups

### WORKGROUPS ARE CENTRAL TO THE SUCCESS OF THE FLORIDA FLOOD HUB

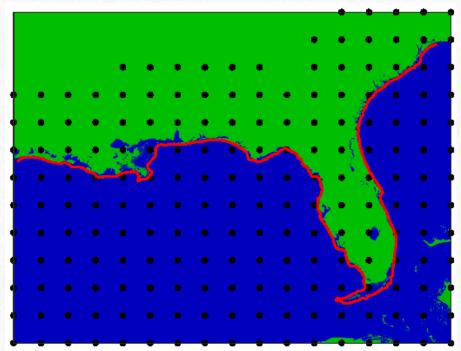


Sea Level Rise Workgroup



Rainfall Workgroup




Comprehensive Modeling Workgroup



# Sea Level Rise Workgroup

### **INITIAL PRODUCTS**

Use data underpinning the Federal Task Force report released in 2022 Focus on sea level rise as it affects Florida Predict changes in sea level from a 2000 baseline Focus on five sea level rise scenarios and three time horizons Assess risk = Magnitude of impact × Likelihood of impact Document increases in sea level for time horizons (magnitude for risk) Incorporate five likely increases in mean global surface air temperatures Calculate the likelihood of exceeding increases (likelihood for risk)





# Sea Level Rise Scenarios for Florida

#### SEA LEVEL RISE WORKGROUP INITIAL PRODUCTS: MAGNITUDE FOR RISK

## Table 1: Sea level change relative to 2000 for Florida across four time horizons

|                            | Time horizon |             |                      |            |  |  |  |  |  |  |
|----------------------------|--------------|-------------|----------------------|------------|--|--|--|--|--|--|
| Global mean                | 2000 – 2020  | 2000 – 2050 | 2000 – 2070          |            |  |  |  |  |  |  |
| sea level rise<br>scenario | mm / inches  |             |                      |            |  |  |  |  |  |  |
| Low                        | 91/3.6       | 198 / 7.8   | 251/9.9              | 336 / 13.2 |  |  |  |  |  |  |
| Intermediate low           | 100 / 3.9    | 227 / 8.9   | 293 / 11.5           | 428 / 16.9 |  |  |  |  |  |  |
| Intermediate               | 103 / 4.1    | 245 / 9.6   | 245 / 9.6 333 / 13.1 |            |  |  |  |  |  |  |
| Intermediate high          | 104 / 4.1    | 272 / 10.7  | 399 / 15.7           | 771 / 30.4 |  |  |  |  |  |  |
| High                       | 104 / 4.1    | 298 / 11.7  | 459 / 18.1           | 979 / 38.5 |  |  |  |  |  |  |



## **Exceedance** Probabilities

### SEA LEVEL RISE WORKGROUP INITIAL PRODUCTS: LIKELIHOOD FOR RISK

Table 2: Exceedance probabilities for sea level rise scenarios projected to 2100

|                                           | Predicted increase in global mean surface air temperature |       |       |       |       |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|
| Global mean<br>sea level rise<br>scenario | 1.5°C                                                     | 2.0°C | 3.0°C | 4.0°C | 5.0°C |  |  |  |  |  |
| Low                                       | 92%                                                       | 98%   | >99%  | >99%  | >99%  |  |  |  |  |  |
| Intermediate low                          | 37%                                                       | 50%   | 82%   | 97%   | >99%  |  |  |  |  |  |
| Intermediate                              | <1%                                                       | 2%    | 5%    | 10%   | 23%   |  |  |  |  |  |
| Intermediate high                         | <1%                                                       | <1%   | <1%   | 1%    | 2%    |  |  |  |  |  |
| High                                      | <1%                                                       | <1%   | <1%   | <1%   | <1%   |  |  |  |  |  |



## **Exceedance** Probabilities

### SEA LEVEL RISE WORKGROUP INITIAL PRODUCTS: LIKELIHOOD FOR RISK

Table 2: Exceedance probabilities for sea level rise scenarios projected to 2100

|                                           | Predicted increase in global mean surface air temperature |       |       |       |       |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|
| Global mean<br>sea level rise<br>scenario | 1.5°C                                                     | 2.0°C | 3.0°C | 4.0°C | 5.0°C |  |  |  |  |  |
| Low                                       | 92%                                                       | 98%   | >99%  | >99%  | >99%  |  |  |  |  |  |
| Intermediate low                          | 37%                                                       | 50%   | 82%   | 97%   | >99%  |  |  |  |  |  |
| Intermediate                              | <1%                                                       | 2%    | 5%    | 10%   | 23%   |  |  |  |  |  |
| Intermediate high                         | <1%                                                       | <1%   | <1%   | 1%    | 2%    |  |  |  |  |  |
| High                                      | <1%                                                       | <1%   | <1%   | <1%   | <1%   |  |  |  |  |  |



# Sea Level Rise Scenarios for Florida

### SEA LEVEL RISE WORKGROUP INITIAL PRODUCTS: MAGNITUDE FOR RISK

## Table 1: Sea level change relative to 2000 for Florida across four time horizons

|                            | Time horizon |             |             |             |  |  |  |  |  |  |
|----------------------------|--------------|-------------|-------------|-------------|--|--|--|--|--|--|
| Global mean                | 2000 – 2020  | 2000 - 2040 | 2000 - 2050 | 2000 – 2070 |  |  |  |  |  |  |
| sea level rise<br>scenario | mm / inches  |             |             |             |  |  |  |  |  |  |
| Low                        | 91/3.6       | 198 / 7.8   | 251/9.9     | 336 / 13.2  |  |  |  |  |  |  |
| Intermediate low           | 100 / 3.9    | 227 / 8.9   | 293 / 11.5  | 428 / 16.9  |  |  |  |  |  |  |
| Intermediate               | 103 / 4.1    | 245 / 9.6   | 333 / 13.1  | 554 / 21.8  |  |  |  |  |  |  |
| Intermediate high          | 104 / 4.1    | 272 / 10.7  | 399 / 15.7  | 771/30.4    |  |  |  |  |  |  |
| High                       | 104 / 4.1    | 298 / 11.7  | 459 / 18.1  | 979 / 38.5  |  |  |  |  |  |  |



# Sea Level Rise Scenarios for Florida

#### POTENTIAL APPLICATION: COMBINE LIKELY RISK WITH PLANNING HORIZON TO INFORM RESILIENT APPROACHES

Table 1: Sea level change relative to 2000 for Florida across four time horizons

| Global mean<br>sea level rise<br>scenario | Time horizon |             |             |            |  |  |  |  |  |  |
|-------------------------------------------|--------------|-------------|-------------|------------|--|--|--|--|--|--|
|                                           | 2000 - 2020  | 2000 - 2050 | 2000 – 2070 |            |  |  |  |  |  |  |
|                                           | mm/inches    |             |             |            |  |  |  |  |  |  |
| Low                                       | 91 / 3.6     | 198 / 7.8   | 251 / 9.9   | 336 / 13.2 |  |  |  |  |  |  |
| Intermediate low                          | 100 / 3.9    | 227 / 8.9   | 293 / 11.5  | 428 / 16.9 |  |  |  |  |  |  |
| Intermediate                              | 103 / 4.1    | 245 / 9.6   | 333 / 13.1  | 554 / 21.8 |  |  |  |  |  |  |
| Intermediate high                         | 104 / 4.1    | 272 / 10.7  | 399 / 15.7  | 771 / 30.4 |  |  |  |  |  |  |
| High                                      | 104 / 4.1    | 298 / 11.7  | 459 / 18.1  | 979 / 38.5 |  |  |  |  |  |  |
|                                           |              |             |             |            |  |  |  |  |  |  |

Examples:

- Transportation (roads and bridges)
- Energy systems (replacement and upgrades)
- Stormwater systems (improved design)
- Shoreline protection (green and gray)
- Other critical assets





### SEA LEVEL RISE WORKGROUP

- Link exceedance probabilities to specific emission pathways and time horizons
- Look at the frequency of occurrence of high tide flooding and other weather related events
- Do a careful quality control and analyses of the regional tide gauge time series
- Explore possible contributions by regional ocean processes



# Changes in Sea Levels at Tide Gauges

|                                                    | i        | ELEVATIONS ON MEAN SEA LEVEL, 1983-2001 EPOCH (in feet) |       |         |       |         |       |         |       |         |       |                            |
|----------------------------------------------------|----------|---------------------------------------------------------|-------|---------|-------|---------|-------|---------|-------|---------|-------|----------------------------|
| NOAA TIDE GAUGE STATION                            | DATUM    | 1000                                                    | 2000  | 20:     | 2020  |         | 40    | 205     | 50    | 2070    |       | <== Reference Year         |
|                                                    | <u> </u> | 1992                                                    | 2000  | Int-Low | Int   | Int-Low | Int   | Int-Low | Int   | Int-Low | Int   | <== NOAA 2022 SLR Scenario |
|                                                    | MHHW     | 3.27                                                    | 3.36  | 3.69    | 3.70  | 4.10    | 4.16  | 4.32    | 4.45  | 4.76    | 5.18  |                            |
| 8720030 Fernandina Beach, FL                       | MSL      | 0.00                                                    | 0.09  | 0.42    | 0.43  | 0.83    | 0.89  | 1.05    | 1.18  | 1.49    | 1.91  |                            |
| 0/20030 F CHRahuma Deach, FL                       | MLLW     | -3.29                                                   | -3.20 | -2.87   | -2.87 | -2.46   | -2.40 | -2.24   | -2.11 | -1.80   | -1.38 |                            |
|                                                    | NAVD88   | 0.53                                                    | 0.62  | 0.95    | 0.96  | 1.36    | 1.42  | 1.58    | 1.71  | 2.02    | 2.44  |                            |
|                                                    | MHHW     | 2.48                                                    | 2.57  | 2.90    | 2.91  | 3.31    | 3.37  | 3.53    | 3.66  | 3.97    | 4.39  |                            |
| 8720218 Mayport (Bar Pilots Dock), FL              | MSL      | 0.00                                                    | 0.09  | 0.42    | 0.43  | 0.83    | 0.89  | 1.05    | 1.18  | 1.49    | 1.91  |                            |
| 0/20210 Mayport (Dar 1 nots DOCK), 1 2             | MLLW     | -2.47                                                   | -2.38 | -2.05   | -2.05 | -1.64   | -1.58 | -1.42   | -1.29 | -0.98   | -0.56 |                            |
|                                                    | NAVD88   | 0.52                                                    | 0.61  | 0.94    | 0.95  | 1.35    | 1.41  | 1.57    | 1.70  | 2.01    | 2.43  |                            |
|                                                    | MHHW     | 1.80                                                    | 1.89  | 2.22    | 2.23  | 2.63    | 2.69  | 2.85    | 2.98  | 3.29    | 3.71  |                            |
| 8720219 Dames Point, FL                            | MSL      | 0.00                                                    | 0.09  | 0.42    | 0.43  | 0.83    | 0.89  | 1.05    | 1.18  | 1.49    | 1.91  |                            |
| 0720217 Dames Form, FL                             | MLLW     | -1.86                                                   | -1.77 | -1.44   | -1.44 | -1.03   | -0.97 | -0.81   | -0.68 | -0.37   | 0.05  |                            |
|                                                    | NAVD88   | 0.38                                                    | 0.47  | 0.80    | 0.81  | 1.21    | 1.27  | 1.43    | 1.56  | 1.87    | 2.29  |                            |
|                                                    | MHHW     | 0.89                                                    | 0.98  | 1.31    | 1.32  | 1.72    | 1.78  | 1.94    | 2.07  | 2.38    | 2.80  |                            |
| 8720226 Southbank Riverwalk, St Johns River, FL    | MSL      | 0.00                                                    | 0.09  | 0.42    | 0.43  | 0.83    | 0.89  | 1.05    | 1.18  | 1.49    | 1.91  |                            |
| 0720220 Southballk Aiver waits, St bound Airer, 12 | MLLW     | -1.06                                                   | -0.97 | -0.64   | -0.64 | -0.23   | -0.17 | -0.01   | 0.12  | 0.43    | 0.85  |                            |
|                                                    | NAVD88   | 0.24                                                    | 0.33  | 0.66    | 0.67  | 1.07    | 1.13  | 1.29    | 1.42  | 1.73    | 2.15  |                            |
|                                                    | мнн      | 0.50                                                    | 0.59  | 0.92    | 0.93  | 1.33    | 1.39  | 1.55    | 1.68  | 1.99    | 2.41  |                            |
| 8720357 I-295 Buckman Bridge, FL                   | MSL      | 0.00                                                    | 0.09  | 0.42    | 0.43  | 0.83    | 0.89  | 1.05    | 1.18  | 1.49    | 1.91  |                            |
| 0/2000/ 1-270 Duckman Druge, I L                   | MLLW     | -0.51                                                   | -0.42 | -0.09   | -0.09 | 0.32    | 0.38  | 0.54    | 0.67  | 0.98    | 1.40  |                            |
|                                                    | NAVD88   | 0.11                                                    | 0.20  | 0.53    | 0.54  | 0.94    | 1.00  | 1.16    | 1.29  | 1.60    | 2.02  |                            |
|                                                    |          |                                                         | 1     | 1.000   |       |         |       | 1       |       |         |       |                            |



UNIVERSITY OF SOUTH FLORIDA College of MARINE SCIENCE

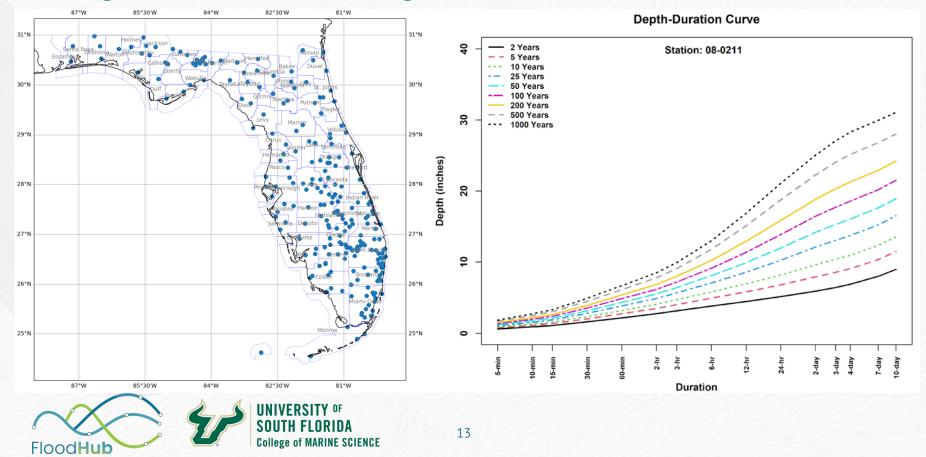
# Scientific and Technical Workgroups

### WORKGROUPS ARE CENTRAL TO THE SUCCESS OF THE FLORIDA FLOOD HUB

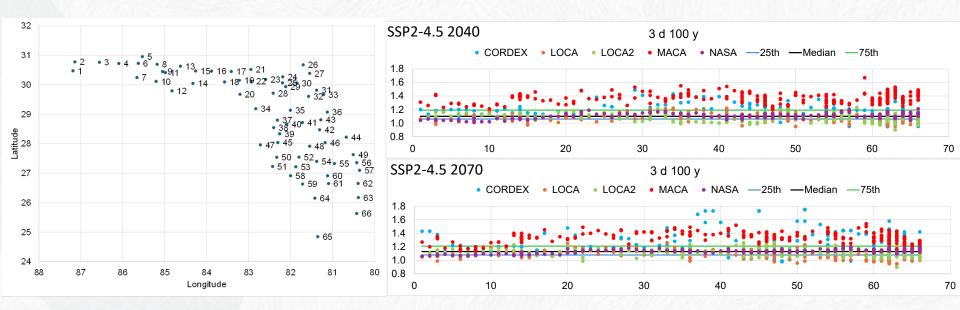


Sea Level Rise Workgroup




Rainfall Workgroup




Comprehensive Modeling Workgroup



## **Change Factors for Design Storms**



## **Evaluate Models and Potential Spatial Patterns**





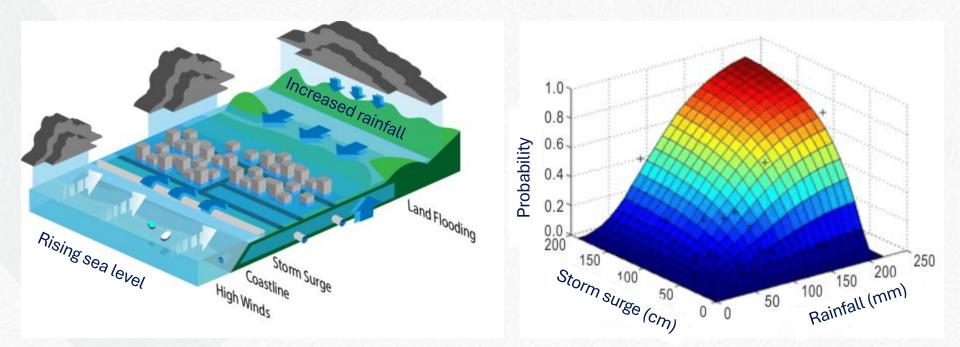
# Scientific and Technical Workgroups

### WORKGROUPS ARE CENTRAL TO THE SUCCESS OF THE FLORIDA FLOOD HUB



Sea Level Rise Workgroup




Rainfall Workgroup



Comprehensive Modeling Workgroup



# **Predict Compound Flooding**





# **Questions?**

# TOM FRAZER tfrazer@usf.edu





UNIVERSITY OF SOUTH FLORIDA College of MARINE SCIENCE

